
WiPal
IEEE 802.11 traces manipulation software

This manual is for WiPal (version 2.1, updated 31 July 2008.)
Copyright c© 2008 Université Pierre et Marie Curie – Paris 6

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the ‘COPYING.DOC’ file at the WiPal package’s root directory.

1

WiPal is a piece of software dedicated to IEEE 802.11 traces manipulation. It comes as a
set of programs and a C++ library. A distinctive feature of WiPal is its merging tool, which
enables merging multiple wireless traces into a unique global trace. WiPal’s key features
are flexibility, ease of use, and efficiency.

i

Table of Contents

1 The programs . 2
1.1 Invocation . 2

1.1.1 Available options . 2
1.1.2 Input syntax . 4

1.2 Concatenation (and Prism noise filtering) . 4
1.3 Comparisons . 5
1.4 Sub-traces . 5
1.5 Merging . 6

1.5.1 Merging more than two traces . 6
1.6 Synchronization . 7
1.7 Unique frames . 7
1.8 Duplicate data frames . 8
1.9 Statistics . 8

1.9.1 Plotting scripts . 11
1.10 Miscellaneous programs . 11
1.11 Undocumented programs . 11

2 The library . 13

3 FAQ . 14
3.1 What systems does WiPal support? . 14
3.2 What are WiPal’s requirements? . 14
3.3 How do I install WiPal? . 14
3.4 Are there any options to optimize WiPal when building it? 15
3.5 Gee! WiPal’s compilation takes long and requires a lot of memory!

. 15
3.6 Do WiPal’s tools have a verbose mode to report extra information

about their operation? . 16
3.7 You say WiPal is flexible and customizable. Is there a way to

customize WiPal’s tools beyond the options they propose? 16
3.8 ‘configure’ complains it did not find library X? 17
3.9 ‘configure’ complains it found library X ’s headers, but is unable

to link? . 17
3.10 ‘configure’ complains library X ’s headers are unusable, despite

successful linking? . 17
3.11 Do you have a list of WiPal’s bugs? . 17
3.12 I have found a bug, what should I do? . 17
3.13 I would really love having feature X implemented! 17
3.14 I have a question this file did not answer! 17

Index . 18
Program index . 18
Concept index . 18

Chapter 1: The programs 2

1 The programs

This part documents the programs WiPal features. Looking for a specific command? See
[Program index], page 18.

1.1 Invocation

WiPal’s programs all use the same invocation scheme:

wipal-<command> [options] [inputs] [outputs]

The command line may include no options and, depending on the program, there may
be no inputs or no outputs. Most programs expect at least one input however. See the
specific documentation for each program in order to know how many inputs and outputs
each program expects.

Inputs, outputs, and options may be mixed on the command line, e.g.:

wipal-simple-merge -n -P input1.pcap input2.pcap output.pcap
wipal-simple-merge input1.pcap input2.pcap output.pcap -P -n
wipal-simple-merge input1.pcap -n input2.pcap -P output.pcap
...

are all equivalent.

WiPal’s programs use getopt(3) to parse options, so they only have short options (no
long options) composed of a dash followed by a letter (e.g. ‘-a’, ‘-t’, etc.) Option letters
always have the same meaning whatever the program. All options are not available for all
programs though (some options do not make sens with some programs). For instance, ‘-P’
always means the invoked program should consider frames with non-zero Prism fields as
invalid. In order to know which options a program accept, use the ‘-h’ option.

Finally, some options expect an extra argument right after they are provided:

wipal-test-uniqueness -a hsh input.pcap
^^^
This is not an input

1.1.1 Available options

‘-8’ When comparing two packets, only compare IEEE 802.11 frames. Do not com-
pare Prism or PCAP headers.

‘-a’ See Section 1.7 [Unique frames], page 7. Specify which attributes the program
must use to identify unique frames. An attribute specifier must follow this
option on the command line. To see a list of valid attribute specifiers, use the
‘-h’ option.

‘-b’ When comparing two packets, only compare packet bytes. Do not compare
PCAP headers.

‘-c’ Do not print column headers. This is the default when standard output is not
a TTY.

‘-C’ Do print column headers. This is the default when standard output is a TTY.

Chapter 1: The programs 3

‘-d’ When comparing two packets, compare everything: PCAP headers and packet
bytes. This is the default.

‘-e’ In table outputs, do not use a column to report error values. This is the default.

‘-E’ In table outputs, do use a column to report error values.

‘-h’ Help. Print a short summary describing how one should invoke the program,
which options it accepts, and possibly which attribute specifiers are accepted
for option ‘-a’.

‘-i’ In table outputs, do not print frame indices.

‘-I’ In table outputs, do print frame indices. This is the default.

‘-m’ Specify the address mapping file. An address mapping file maps 6 bytes MAC
identifiers to 32 bit integers. The only purpose of such a mapping is to im-
prove performances. The file is just a plaintext file with an integer and a MAC
identifier on each line.
A filename should follow this option. The file might not exist (in which case it
will be created). If it exist, it might be extended, but will not be truncated.
When not specified, the ‘mapping’ filename is used.

‘-n’ Consider Prism headers are little endian. This is the default when the corre-
sponding PCAP file is little endian. Note that some broken traces are big endian
yet have little endian Prism headers. Thus this option.

‘-N’ Consider Prism headers are big endian. This is the default when the corre-
sponding PCAP file is big endian.

‘-p’ In Prism headers, do not consider noise fields have a special meaning. This is
the default.

‘-P’ In Prism headers, consider non-null noise fields indicate a PHY error, and thus
an invalid frame. Such frames will be ignored, e.g. with wipal-cat they will
not appear in the output.
This option implicitly implies the input trace is composed of Prism headers (as
PCAP link type).

‘-q’ Quiet. Produce minimal output.

‘-r’ Blacklist a given reference frame. The reference frame will then be ignored
and will not be used during synchronization. See Section 1.6 [Synchronization],
page 7.
A reference frame identifier must follow this option, e.g. 42-51 (indicating the
reference frame composed of the unique frames 42 and 51).
You may use this option multiple times, e.g.

wipal-simple-merge -r 42-51 -r 666-505 \
input1.pcap input2.pcap output.pcap

will blacklist both references 42-51 and 666-505.

‘-t’ When comparing two packets, only compare IEEE 802.11 frames, along with
some timestamps (e.g. PCAP time, Prism MAC time, etc). Which timestamps

Chapter 1: The programs 4

are used depends on the traces’ link types. Compare time values with a precision
of 106 microseconds (that is, assume two values are equal when they are spaced
by less than 106 microseconds).

‘-u’ In table outputs, do not print microsecond timestamps. This is the default.

‘-U’ In table outputs, do print microsecond timestamps.

‘-v’ Display the program’s version (actually the version of the WiPal’s package the
program come from).

1.1.2 Input syntax

Basic usage
You may provide the name of a PCAP trace file as input.

wipal-cat input.pcap output.pcap

Advanced usage
You may provide the name of several PCAP traces separated with columns (do
not include any space). This tells the program to consider the concatenation of
each trace as a single input.

wipal-cat input1.pcap:input2.pcap:input3.pcap output.pcap

will put into ‘output.pcap’ the content of ‘input1.pcap’, followed by the con-
tent of ‘input2.pcap’ and then ‘input3.pcap’.
Every program understands this syntax. Note that specifying multiple traces
with columns makes no sense for outputs:

wipal-cat input1.pcap:input2.pcap output1.pcap:output2.pcap

will concatenate ‘input1.pcap’ and ‘input2.pcap’ into a single file named
‘output1.pcap:output2.pcap’!

1.2 Concatenation (and Prism noise filtering)

One may concatenate traces using the wipal-cat command. It takes exactly one input and
one output. It may be useful to recombine a trace that was split, or filter out frames with
Prism noise (using the ‘-P’ option).

wipal-cat in.pcap out.pcap
wipal-cat foo.pcap.0:foo.pcap.1 foo.pcap
wipal-cat -P in.pcap out.pcap
wipal-cat -P bar.pcap.0:bar.pcap.1:bar.pcap.2 bar.pcap

The first example just copies ‘in.pcap’ into ‘out.pcap’. Note that the two files might
be different at the byte level, e.g. if ‘in.pcap’ is big endian and the program is run on a
little endian machine.

The second example concatenate ‘foo.pcap.0’ and ‘foo.pcap.1’ and put the result into
‘foo.pcap’.

The third example copies ‘in.pcap’ into ‘out.pcap’ but removes frames that have a
non-zero noise field in their Prism headers.

The fourth example both concatenates traces while filtering noisy frames out.

Chapter 1: The programs 5

1.3 Comparisons

One may test two PCAP traces for equivalence using the wipal-cmp command. The default
is to compare every bit of information (PCAP headers plus packet bytes) but you may
change this behavior using the ‘-8’, ‘-b’, or ‘-t’ options. Note that this is different however
to using diff or cmp since traces with different endianness may contain the same packets.

By default wipal-cmp produces a report indicating either that traces are equal, either
which packet is the first to mismatch. Use ‘-q’ if you are only interested in the program’s
exit status and do not want to produce any output.

e.g.:
wipal-cmp foo.pcap bar.pcap
wipal-cmp -q foo.pcap bar.pcap
wipal-cmp -q -8 in1.pcap.0:in1.pcap.1 in2.pcap
...

1.4 Sub-traces

One may extract sub-traces of PCAP traces using wipal-extract-subtrace,
wipal-extract-transmitter, or wipal-extract-bssid.

wipal-extract-subtrace
takes two dates and a PCAP trace as inputs, and produces one output. Unfor-
tunately, it does not support any option currently.

wipal-extract-transmitter
takes a MAC address and a PCAP trace as input, and produces one output.
Its output contains the frames from its input that were transmitted by the
given address. Note that the command looks at transmitters, not originators,
e.g. the transmitter of a data frame that crossed the distribution system is the
output access point, not the original sender. Also note that some frames do not
contain information regarding their transmitters (e.g. MAC acknowledgements)
and therefore cannot appear in the output, even if they were effectively sent by
the given address.

wipal-extract-bssid
works as wipal-extract-transmitter, but the MAC address represents a
BSSID and the command extracts frames that belong to the corresponding
BSS. Again, note that some frames do not contain information regarding their
BSS. These frames therefore cannot appear in the output, even if they were
effectively belonging to the given BSS.

e.g.:
wipal-extract-subtrace 2007-01-01 2008-01-01 \

in.pcap.0:in.pcap.1 out.pcap

wipal-extract-subtrace \
"2004-Aug-30 16:59:39.789221" "2004-Aug-30 16:59:39.929872" \
kalahari-ath2 subtrace.pcap

Chapter 1: The programs 6

wipal-extract-transmitter 71:19:9f:6f:71:33 in.pcap out.pcap
wipal-extract-bssid 9b:d2:d7:7f:aa:63 in.pcap out.pcap

1.5 Merging

One may merge two IEEE 802.11 traces into one using the wipal-simple-merge command.

Use the ‘-h’ option to have a description of the command’s syntax. It takes two inputs
and produce one output. When ran, the merging process starts by synchronizing precisely
both inputs (see Section 1.6 [Synchronization], page 7). Then both traces are merged and
special care is given not to re-order packets or account duplicate packets twice in the output
(that is, packets that are present in both traces appear only once in the output).

This command expects PCAP traces with either Prism headers, AVS headers, Radiotap
headers, or raw IEEE 802.11 frames as link type. The ‘-p’ and ‘-P’ options only work with
Prism headers. The following timestamps are used:

IEEE 802.11 frames
PCAP timestamps,

Radiotap headers
Radiotap headers’ tsft fields. The command will fail with Radiotap headers
that do not contain such fields,

AVS headers
AVS headers’ mactime fields,

Prism headers
Prism headers’ mactime fields.

e.g.:

wipal-simple-merge a.pcap b.pcap output.pcap
wipal-simple-merge -P -n foo-ath2.0:foo-ath2.1 bar-ath2 foo-bar-ath2
...

1.5.1 Merging more than two traces

wipal-simple-merge is only able to merge two traces. In order to merge more traces, one
should run successive merges following a given sequence. For instance, merging traces A, B,
and C might involve merging A and B into T first, and then merging T and C. The wipal-
merge command selects a merging sequence and runs the corresponding merge operations
in turn.

e.g.:

wipal-merge t1.pcap t2.pcap t3.pcap
wipal-merge -n -P t11.pcap:t12.pcap:t13.pcap t21.pcap:t22.pcap t3.pcap

There is no rule to determine which merging sequence will give the “best” results. We
consider the two traces that are the most similar should be merged first. This to avoid
generating anomalies due to a lack of reference frames (see Section 1.6 [Synchronization],
page 7). In order to compute similarity between two traces A and B, WiPal count the
number of reference frames it is able to extract from these traces, stopping when it reaches
B’s 250,000th unique frame (see Section 1.7 [Unique frames], page 7). Despite its issues,

Chapter 1: The programs 7

this technique has the advantage of being both simple to implement and fast (determining
a merging sequence should not take more time than actually merging the traces).

wipal-merge computes its merging sequence as follows. Note that it is designed to be
fast rather than to yield an optimal sequence.
1. For each trace, compute its similarity with each other trace.
2. Sort results by similarity.
3. Pick up the most similar result.

• If it involves two non-merged traces, merge them.
• If it involves a trace A that has already been merged into another trace T, consider

merging T instead of A.
• If it involves two traces that were already merged into the same trace, do nothing.

4. Pick up the next result in the list and repeat step 3 until all traces have been merged
into one unique trace.

One may compute the similarity between multiple traces using the wipal-similarity
command. The output is sorted by ascending order of similarity. e.g.:

wipal-similarity t1.pcap t2.pcap
wipal-similarity -P t1.pcap t2.pcap t3.pcap t4.pcap

1.6 Synchronization

In order to merge two IEEE 802.11 traces WiPal needs to synchronize them precisely. In
order to do so, it first identifies some frames that appear in both inputs. These are reference
frames. It uses these frames to model clock desynchronization among the traces. It then
update the first trace’s timestamps so they are synchronized with the second trace.

One may use the wipal-synchronize command to synchronize two traces. It takes two
inputs and produce one output. The output contains the same packets as the first input,
but with synchronized timestamps.

To extract reference frames WiPal extract some specific frames called unique frames
(see Section 1.7 [Unique frames], page 7) from both input traces and then intersect the
two obtained sets. One may use the wipal-intersect-unique-frames command to get
the result of this operation (i.e. the list of reference frames used for synchronization of two
traces).

WiPal’s synchronization process synchronizes reference frames before it synchronizes
other frames. One may get the result of this operation using the wipal-synchronize-
unique-frames command.

e.g.:
wipal-intersect-unique-frames -n -P foo.0:foo.1:foo.2 bar.0:bar.1
wipal-synchronize-unique-frames -n -P foo.0:foo.1:foo.2 bar.0:bar.1
wipal-synchronize -n -P foo.0:foo.1:foo.2 bar.0:bar.1 foo-sync

1.7 Unique frames

A frame is said to be unique when it appears in the air once and only once for the whole
duration of a trace. WiPal’s unique frame extraction process is an important stage of its

Chapter 1: The programs 8

trace synchronization process. WiPal considers all beacon frames and all non-retransmitted
probe responses as unique frames.

One may use the wipal-extract-unique-frames command to get a list of the unique
frames that compose a trace. Run wipal-extract-unique-frames -h to get its invocation
syntax.

In practice, WiPal does not extract and load full unique frames into memory. This
would slow the process down and require an excessive amount of memory. The default is
to work on MD5 frame hashes when WiPal was compiled using OpenSSL. When compiled
without OpenSSL, WiPal only extracts a subset of frame fields. We call the pieces of
information WiPal extracts to identify unique frames “frame attributes”, or sometimes
“frame identifiers”.

You may specify frame attributes to use with the ‘-a’ option. In practice, the difference
in speed and memory consumption between attributes is negligible. There is an important
difference between attributes, though. With some attributes, different unique frames may
yield identical attributes (collisions). This is of course an undesirable behavior.

One may check that a given trace’s unique frames are really unique w.r.t. unique frame
attributes using the wipal-test-uniqueness command. This command finds collisions
inside its input traces. You might specify different frame attributes using the ‘-a’ option.

e.g.:
wipal-test-uniqueness -P -a timestamp foo.pcap.1:foo.pcap.2
wipal-extract-unique-frames -P foo.pcap.1:foo.pcap.2 > foo-unique.txt

1.8 Duplicate data frames

One may use the wipal-find-data-dups command to search some invalid data frames.
It looks into traces on a per-sender basis for successive duplicate data frames (it only
considers non-retransmitted frames). Such cases should not occur in theory - as it ignores
retransmissions, successive data frames from the same sender should at least show variations
in their sequence numbers. Surprisingly, some traces contain such anomalies: identical data
frames that are not retransmissions and are only spaced by a few milliseconds. We have no
explanations why some datasets exhibit those phenomena.

e.g.:
wipal-find-data-dups foo.pcap.0:foo.pcap.1:foo.pcap.2

1.9 Statistics

wipal-stats computes several figures concerning its given input PCAP traces. It displays
these figures as plain text on the standard output. You might either interpret them directly
or post-process them with some tools, e.g. to generate plots.

Most of the output figures are self-explanatory and therefore will not be mentioned in
this manual. Some others need an explanation though:

frames from expired senders
The computation of some figures needs wipal-stats to keep a state for each
sender (e.g. its current sequence number). To avoid some measurement arti-
facts, each state expires after one minute of inactivity from its sender. This

Chapter 1: The programs 9

counter indicates how many frames were received which sender had expired
upon reception of the frame.

sequence gap too large to make sense
A sequence gap occurs every time a frame is received which sequence number
is greater than its sender’s previous sequence number plus one. Theoretically,
a gap of length N (e.g. receiving frame ‘42’ and then frame ‘42 + N + 1’) means
the sniffer missed ‘N’ frames. Sometimes however the gap is too large to make
sense (e.g. a gap of 2000 within a window of 500 microseconds). WiPal counts
the number of occurrences of these gaps, but otherwise ignores them (e.g. when
estimating the number of missed frames).

gap length frequencies
This gives the frequencies of sequence gap lengths (see above). The data is
directly suitable for Gnuplot. Use the wipal-plot-gaplenfreqs script to gen-
erate the plot using Gnuplot. e.g.

wipal-stats foo.pcap > foo.stats
wipal-plot-gaplenfreqs foo.stats freqs.eps "A title"

T-Fi plot This gives data suitable for Gnuplot to generate a T-Fi plot. Use the wipal-
plot-tfi script to generate the plot using Gnuplot. e.g.

wipal-stats foo.pcap > foo.stats
wipal-plot-tfi foo.stats tfi.eps "A title"

One may find an explanation about T-Fi plots in the following paper: On the
fidelity of 802.11 Packet Traces, A. Schulman, D. Levin, and N. Spring, in the
proceedings of PAM 2008.

BSS figures
This gives a list of all BSSs the trace contains as well as a few other figures (e.g.
number of distinct BSSs, APs and STAs corresponding to each BSS, etc.) The
list is ordered by number of beacons seen for each BSS.

SSID figures
This gives the number of distinct SSIDs the trace contains as well as two lists
of these SSIDs. The first one orders them by frequency, the second one orders
them lexicographically.

activity This gives data that represents quantity of traffic w.r.t. elapsed time. Each line
correspond to one minute. Columns respectively represent:

1. how many frames were sent (during the corresponding minute),

2. how many bytes were sent,

3. how many bytes from management frames were sent,

4. how many bytes from data frames were sent.

5. how many bytes from access points were sent. When a STA emits a beacon
which is not belonging to an independent BSS (i.e. STA emits an infras-
tructure mode beacon), WiPal identifies this STA as an access point. All
further frames from this STA are accounted as access point traffic.

Chapter 1: The programs 10

One might use the wipal-plot-activity script to plot traffic rate w.r.t.
elapsed time for the whole trace, only for management frames, or only for
access point frames. e.g.

wipal-stats foo.pcap > foo.stats
wipal-plot-activity foo.stats activity.eps "A title"

Various growths (MAC addr., BSSID, IBSSID, SSID, AP)
Actually each “growth” section gives the same kind of statistics, but for various
elements. Elements are:

MAC addr.
MAC addresses, without BSSIDs or IBSSIDs. Inspect all frames.

BSSID BSSIDs that are not IBSSIDs. That is, independent BSS frames
(i.e. ad hoc mode frames) are ignored. Only inspect beacon frames,
despite other frames also contain BSSIDs.

IBSSID IBSSIDs. That is, only account independent BSS frames (i.e. ad
hoc mode frames). Also, only inspect beacon frames, despite other
frames also contain IBSSIDs.

SSID All SSIDs. Only inspect beacon frames (e.g., ignore probe re-
sponses).

AP Sender MAC addresses from beacons. Account both normal BSS
frames (infrastructure mode) and independent BSS frames (ad hoc
mode).

For a given element type, “growth” data gives statistics about the evolution of
the number of distinct elements. Each row represents a minute of measurement.
Columns respectively represent:
1. The number of new distinct elements seen the last minute.
2. The total number of distinct elements seen since the beginning of the trace.
3. The number of distinct elements seen during the last minute.

For instance, if a trace contains the following elements:

first minute
A B C

second minute
A D

third minute
A B D

The corresponding rows are:
3 3 3
1 4 2
0 4 3

One might use the wipal-plot-growth script to plot an element growth w.r.t.
elapsed time. e.g.

wipal-stats foo.pcap > foo.stats
wipal-plot-growth "MAC addr." foo.stats mac-growth.eps "A title"

Chapter 1: The programs 11

1.9.1 Plotting scripts

wipal-plot-all is a wrapper that that call all of WiPal’s plotting scripts. e.g.:
$ wipal-stats foo.pcap > foo.stats
$ wipal-plot-all foo.stats
$ ls
foo.pcap foo.stats.I-growth.eps foo.stats.gaplenfreqs.eps
foo.stats foo.stats.M-growth.eps foo.stats.tfi.eps
foo.stats.A-growth.eps foo.stats.S-growth.eps
foo.stats.B-growth.eps foo.stats.activity.eps

wipal-plot-activity and wipal-plot-growth use PCAP timestamps for the x axis.
Usually, PCAP timestamps use GMT. However, traces are not necessarily recorded in a
GMT zone. You might use the WP_TZ environment variable to fix this. This variable
specifies to WiPal’s plot scripts a time adjustment in minutes.

e.g., if you recorded a trace in a GMT-4 zone, plot its statistics with:
WP_TZ=$((-4 * 60)) wipal-plot-activity foo.stats

1.10 Miscellaneous programs

wipal-list-frames just list a trace’s frames. This is a pretty dumb program, yet one may
use it to display a trace’s timestamps. e.g.:
$ wipal-list-frames foo.pcap | head
1
2
3
4
5
6
7
8
9
10
$ wipal-list-frames -C -U foo.pcap | head
foo.pcap
Frame ID Microseconds
======== ============
1 1258703194
2 1258704299
3 1258704368
4 1258705143
5 1258709302
6 1258709362
7 1258709784

1.11 Undocumented programs

WiPal’s configure script has two options ‘--enable-probe-stats’ and
‘--enable-wit-import’. These options enable the build of several programs, namely

Chapter 1: The programs 12

wipal-probe-stats, wit-create-datafiles, wit-create-tables-and-load-data, and
wit-import. By default the build of those programs is disabled.

Those are legacy programs that were useful to somebody once, yet are incomplete and
flawed. They will not be updated later, and are not documented here. Build and use at
your own risks!

Chapter 2: The library 13

2 The library

A C++ library also compose WiPal. WiPal programs all use this library. At a low level
it provides various convenience tools (PCAP file input/output, random access to PCAP
traces, support for various static C++ techniques, etc.) At an upper level it provides a
generic IEEE 802.11 frame parser that is easy to customize and re-use. Finally, it provides
various mechanisms to synchronize and merge PCAP traces directly from C++ code.

The library is called libwipal and its headers are located in $(prefix)/include/wipal.
You should be able to include them as follows:

#include <wipal/pcap/descriptor.hh>
// ...

You will then need to provide the ‘-lwipal’ option to your compiling/linking tools.
The main documentation for this library is provided as a Doxygen documentation.

It should be installed into WiPal’s package data directory, into the ‘doxygen’
subdirectory. By default this gives ‘/usr/local/share/wipal/doxygen/’. This
documentation is however a bit messy, and lacks some parts. The best entry point to
learn how to use the library is to look at some of WiPal’s tools’ source code (e.g. into
‘src/misc/wipal-find-data-dups.cc’). You may also want to have a look at WScout
which is another program that uses WiPal (some versions of WScout embeds WiPal under
the name trace-tools).

http://wscout.lip6.fr/

Chapter 3: FAQ 14

3 FAQ

3.1 What systems does WiPal support?

WiPal was mostly designed using standard C++ and portable libraries. It however uses
a few GCC extensions. Yet WiPal should run fine on most systems (e.g. GNU/Linux,
WhateverBSD, Mac OS, Windows, ...).

WiPal is however exclusively tested on Debian GNU/Linux (amd64 and, to a lower
extent, powerpc). Which means you might experience problems on other systems, which
the developers might not be aware of. In this case, please give feedback to them so they
can fix it. Anyway, there should be no major obstacle to WiPal’s portability.

3.2 What are WiPal’s requirements?

WiPal needs:
• GCC.
• The Boost C++ libraries. More specifically:

− array,
− date time,
− foreach,
− format,
− conversion/lexical cast,
− optional,
− preprocessor
− smart ptr,
− tokenizer,
− tuple,
− variant.

• The GNU MP Bignum Library,
• OpenSSL.

3.3 How do I install WiPal?

WiPal’s packaging follows the GNU conventions. An installation documentation is provided
in the ‘INSTALL’ file in the package’s root directory. However, with a standard system, the
following commands should do the trick:

mkdir _build
cd _build
../configure
make
make install-strip
make check

On some systems, you might have to customize the ‘configure’ script’s invocation. e.g.:

http://gcc.gnu.org/
http://gcc.gnu.org/
http://www.boost.org/
http://gmplib.org/
http://www.openssl.org/

Chapter 3: FAQ 15

mkdir _build
cd _build
../configure CPPFLAGS=-I/foo/bar/libgmp
make
make install-strip
make check

3.4 Are there any options to optimize WiPal when building
it?

You might want to compile WiPal with the NDEBUG preprocessor symbol defined. If you use
GCC you might also want to use its -O3 option. You can do that by running ‘configure’
with the following options:

./configure CPPFLAGS=-DNDEBUG CXXFLAGS=-O3

3.5 Gee! WiPal’s compilation takes long and requires a lot
of memory!

WiPal heavily uses static C++ mechanisms and a full build requires instantiating many
templates. This results in a long build process that requires much memory. You may
disable some template instantiations to have a faster and lighter build process. This will
however remove some features at the end. You may invoke configure with the following
options:

‘--enable-linktypes=LT1:LT2:...’
will only enable the listed PCAP link types when compiling WiPal. The avail-
able link types are:

IEEE802_11
raw IEEE 802.11 frames,

IEEE802_11_RADIO
Radiotap headers,

IEEE802_11_RADIO_AVS
AVS headers,

PRISM_HEADER
Prism headers.

‘--enable-attributes=A1:A2:...’
will only enable the listed unique frame attributes (see Section 1.7 [Unique
frames], page 7) when compiling WiPal. The list’s first attribute is the default
one (when ‘-a’ is not provided on the command line). Available attributes are:
• tmp
• seq tmp
• dst tmp
• src tmp
• bss tmp
• src bss tmp

Chapter 3: FAQ 16

• seq bss tmp
• seq dst bss tmp
• seq src bss tmp
• hsh (requires OpenSSL)

If you know you are going to need only one PCAP link type (e.g. Prism headers), and
you do not want to test various attributes, a good choice might be:

./configure --enable-linktypes=PRISM_HEADER --enable-attributes=seq_bss_tmp

which will only instantiate one template configuration for each WiPal utility.

3.6 Do WiPal’s tools have a verbose mode to report extra
information about their operation?

There is no such options that can be activated dynamically. You might want however to
compile WiPal with the WP_ENABLE_INFO preprocessor symbol defined. This will enable
the printing of some extra information in some tools as they run (e.g. number of processed
frames, synchronization error, etc.). Invoke the ‘configure’ script with the following option:

./configure CPPFLAGS=-DWP_ENABLE_INFO

Note however that this may slow some tools down and may require more memory.

3.7 You say WiPal is flexible and customizable. Is there a
way to customize WiPal’s tools beyond the options they
propose?

Yes! But this requires recompiling WiPal’s tools, and sometimes modifying a few lines of
their source code.
• You may change WiPal’s linear regression window (for trace synchronization) by defin-

ing the WP_LRSYNC_WINDOW_SIZE macro symbol. Use the CPPFLAGS environment vari-
able for this. The default value is 3.
e.g.:

./configure CPPFLAGS=’-DWP_LRSYNC_WINDOW_SIZE=42’

• You may change the windowed merging algorithm’s window size by defining the WP_
WMERGE_WINDOW_SIZE macro symbol. Use the CPPFLAGS environment variable for this.
The default value is 3.
e.g.:

./configure CPPFLAGS=’-DWP_WMERGE_WINDOW_SIZE=42’

• You may change the frame attributes (i.e. frame identifiers) to use in tools that do not
support the ‘-a’ option by modifying a few lines of their source code. This generally
needs changing an include and a typedef, e.g.:

-#include <wipal/wifi/frame/unique_id/seqctl_bssid_timestamp.hh>
+#include <wipal/wifi/frame/unique_id/seqctl_source_bssid_timestamp.hh>

// ...

- typedef wifi::frame::seq_bss_tmp_id unique_id;
+ typedef wifi::frame::seq_src_bss_tmp_id unique_id;

Chapter 3: FAQ 17

3.8 ‘configure’ complains it did not find library X?

Either library X is not installed on your system, either your system is not properly config-
ured, so the library cannot be found.

You may use the CPPFLAGS and LDFLAGS variables to correct this behavior.
e.g., run

./configure CPPFLAGS=-I/custom/path/include \
LDFLAGS=-L/custom/path/lib

3.9 ‘configure’ complains it found library X ’s headers, but
is unable to link?

Most probably library X is installed but its binaries are in a non-standard place. Use the
LDFLAGS variable as described previously.

3.10 ‘configure’ complains library X ’s headers are unusable,
despite successful linking?

Most probably library X is installed but its headers are in a non-standard place. Use the
CPPFLAGS variable as described previously.

3.11 Do you have a list of WiPal’s bugs?

No. We are not aware of any serious bug in WiPal. We take a special care at testing WiPal
with an automated test suite. Do not hesitate to report unknown bugs to the package’s
maintainers. We will hunt them.

With some tools, you might however encounter some strange behaviors when providing
invalid inputs (e.g. running wipal-find-data-dups a:b with ‘b’ having a link type different
from ‘a’). Consider that as a “feature”! ;-)

3.12 I have found a bug, what should I do?

Report it to the package’s maintainers.

3.13 I would really love having feature X implemented!

Give feedback to the package’s maintainers about the features you want. We might not have
the time to implement them, yet it is important for us to know when important features
are missing.

Regarding features you miss, you are greatly encouraged to contribute to WiPal. Again,
contact the package’s maintainers so they can help you implement new features.

3.14 I have a question this file did not answer!

Mail the package’s maintainers.

mailto:thomas.claveirole@lip6.fr
mailto:thomas.claveirole@lip6.fr

Index 18

Index

Program index

wipal-cat. 4
wipal-cmp. 5
wipal-extract-bssid . 5
wipal-extract-subtrace . 5
wipal-extract-transmitter 5
wipal-extract-unique-frames 7
wipal-find-data-dups . 8
wipal-intersect-unique-frames 7
wipal-list-frames . 11
wipal-merge . 6
wipal-plot-activity . 8, 11
wipal-plot-all . 8, 11
wipal-plot-gaplenfreqs 8, 11

wipal-plot-growth . 8, 11

wipal-plot-tfi . 8, 11

wipal-probe-stats . 11

wipal-similarity . 6

wipal-simple-merge . 6, 16

wipal-stats . 8

wipal-synchronize . 7

wipal-synchronize-unique-frames 7

wipal-test-uniqueness . 7

wit-create-datafiles . 11

wit-create-tables-and-load-data 11

wit-import . 11

Index 19

Concept index

PCAP link types . 15

A
attributes . 2, 7, 16
Available options . 2

B
bug . 17

C
Comparisons . 5
compilation . 15
compilation time . 15
Concatenation . 4
customizing . 15, 16

D
data frames . 8
dependencies . 14
Doxygen . 13
Duplicate data frames . 8
duplicates . 7, 8

E
error . 17

F
feature . 17

I
input syntax . 4
installation . 14, 15, 16
Invocation . 2

L
library . 13

M
Merging . 6, 16
miscellaneous . 11

O
optimizations . 15
options. 2

P
PCAP link types . 6
Prism noise filtering . 4
problem . 17
program syntax . 2, 4

R
reference frames . 7
request. 17
requirements . 14

S
Statistics . 8
Sub-traces . 5
support . 14
Synchronization . 7
syntax . 2, 4
system . 14

T
troubleshooting . 17

U
undocumented . 11
Unique frames . 7, 15

V
verbose . 16

	The programs
	Invocation
	Available options
	Input syntax

	Concatenation (and Prism noise filtering)
	Comparisons
	Sub-traces
	Merging
	Merging more than two traces

	Synchronization
	Unique frames
	Duplicate data frames
	Statistics
	Plotting scripts

	Miscellaneous programs
	Undocumented programs

	The library
	FAQ
	What systems does support?
	What are 's requirements?
	How do I install ?
	Are there any options to optimize when building it?
	Gee! 's compilation takes long and requires a lot of memory!
	Do 's tools have a verbose mode to report extra information about their operation?
	You say is flexible and customizable. Is there a way to customize 's tools beyond the options they propose?
	configure complains it did not find library X?
	configure complains it found library X's headers, but is unable to link?
	configure complains library X's headers are unusable, despite successful linking?
	Do you have a list of 's bugs?
	I have found a bug, what should I do?
	I would really love having feature X implemented!
	I have a question this file did not answer!

	Index
	Program index
	Concept index

